qlauncher.routines.orca.algorithms#
Summary#
Classes:
Binary Bosonic Solver algorithm class. |
Reference#
- class qlauncher.routines.orca.algorithms.BBS(algorithm_format: Literal['qubo', 'fn'] = 'qubo', input_state: list[int] | None = None, n_samples: int = 100, gradient_mode: str = 'parameter-shift', gradient_delta: float = 0.5235987755982988, sampling_factor: int = 1, learning_rate: float = 0.05, learning_rate_flip: float = 0.1, updates: int = 100)[source]#
Bases:
AlgorithmBinary Bosonic Solver algorithm class.
This class represents the Binary Bosonic Solver (BBS) algorithm. BBS is a quantum-inspired algorithm that solves optimization problems by mapping them onto a binary bosonic system. It uses a training process to find the optimal solution.
### Attributes:
algorithm_format (‘qubo’, ‘fn’), optional): If the algorithm input is a function or a qubo matrix. Defaults to ‘qubo’.
input_state (list[int] | None, optional): Photonic circuit input state provided to the ORCA computer. If None defaults to [1,0,1,0,1…]. Defaults to None.
n_samples (int, optional): Number of samples. Defaults to 100.
gradient_mode (str, optional): Gradient mode. Defaults to “parameter-shift”.
gradient_delta (float, optional): Gradient Delta. Defaults to np.pi/6.
sampling_factor (int, optional): Number of times quantum samples are passed through the classical flipping layer. Defaults to 1.
learning_rate (float, optional): Learning rate of the algorithm. Defaults to 5e-2.
learning_rate_flip (float, optional): Bit flip learning rate. Defaults to 1e-1.
updates (int, optional): Number of epochs. Defaults to 100.