qlauncher.launcher.qlauncher#
File with templates
Summary#
Classes:
QLauncher class. |
Functions:
Reference#
- class qlauncher.launcher.qlauncher.QLauncher(problem: Problem, algorithm: Algorithm, backend: Backend | None = None, logger: Logger | None = None)[source]#
Bases:
object
QLauncher class.
Qlauncher is used to run quantum algorithms on specific problem instances and backends. It provides methods for binding parameters, preparing the problem, running the algorithm, and processing the results.
- path#
The path to save the results. Defaults to ‘results/’.
- Type:
str
- binding_params#
The parameters to be bound to the problem and algorithm. Defaults to None.
- Type:
dict or None
- encoding_type#
The encoding type to be used changing the class of the problem. Defaults to None.
- Type:
type
Example of usage:
from qlauncher import QLauncher from qlauncher.problems import MaxCut from qlauncher.routines.qiskit import QAOA, QiskitBackend problem = MaxCut(instance_name='default') algorithm = QAOA() backend = QiskitBackend('local_simulator') launcher = QLauncher(problem, algorithm, backend) result = launcher.process(save_pickle=True) print(result)
- run(**kwargs) Result [source]#
Finds proper formatter, and runs the algorithm on the problem with given backends.
- Returns:
The results of the algorithm execution.
- Return type:
dict
- save(path: str, save_format: Literal['pickle', 'txt', 'json'] = 'pickle')[source]#
Save last run result to file
- Parameters:
path (str) – File path.
save_format (Literal['pickle', 'txt', 'json'], optional) – Save format. Defaults to ‘pickle’.
- Raises:
ValueError – When no result is available or an incorrect save format was chosen