Examples ======== | Using QLauncher is simple. | Simply specify the problem, algorithm and backend you want to use, and QLauncher will take care of the rest. | Here are some examples to get you started. | (These examples are also available in the examples directory of the repository.) ---------------- Qiskit ---------------- :: from qlauncher import * from qlauncher.routines.qiskit import QiskitBackend, QAOA pr = problems.JSSP(3, 'exact', instance_name='default', optimization_problem=True) alg = QAOA() backend = QiskitBackend('local_simulator') launcher = QLauncher(pr, alg, backend) result = launcher.run() print(result) ---------------- Dwave ---------------- :: from qlauncher import * from qlauncher.routines.dwave import SimulatedAnnealingBackend, DwaveSolver problem = problems.MaxCut(instance_name='default') alg = DwaveSolver(1) backend = SimulatedAnnealingBackend('local') launcher = QLauncher(problem, alg, backend) result = launcher.run() print(result) ---------------- Orca ---------------- :: from qlauncher import * from qlauncher.routines.orca import OrcaBackend, BBS problem = problems.MaxCut(instance_name='default') alg = BBS() backend = OrcaBackend('local') launcher = QLauncher(problem, alg, backend) result = launcher.run() print(result)