quantum_launcher.routines.qiskit_routines.algorithms.qiskit_native#

Algorithms for Qiskit routines

Summary#

Classes:

FALQON

Algorithm class with FALQON.

QAOA

Algorithm class with QAOA.

QiskitOptimizationAlgorithm

Abstract class for Qiskit optimization algorithms

Functions:

commutator

Commutator

Reference#

class quantum_launcher.routines.qiskit_routines.algorithms.qiskit_native.QiskitOptimizationAlgorithm(**alg_kwargs)[source]#

Bases: Algorithm

Abstract class for Qiskit optimization algorithms

make_tag(problem: Problem, backend: IBMBackend) str[source]#
get_processing_times(tag: str, primitive: BasePrimitive) None | tuple[list, list, int][source]#
quantum_launcher.routines.qiskit_routines.algorithms.qiskit_native.commutator(op_a: SparsePauliOp, op_b: SparsePauliOp) SparsePauliOp[source]#

Commutator

class quantum_launcher.routines.qiskit_routines.algorithms.qiskit_native.QAOA(p: int = 1, alternating_ansatz: bool = False, aux=None, **alg_kwargs)[source]#

Bases: QiskitOptimizationAlgorithm

Algorithm class with QAOA.

Parameters:
  • p (int) – The number of QAOA steps. Defaults to 1.

  • alternating_ansatz (bool) – Whether to use an alternating ansatz. Defaults to False. If True, it’s recommended to provide a mixer_h to alg_kwargs.

  • aux – Auxiliary input for the QAOA algorithm.

  • **alg_kwargs – Additional keyword arguments for the base class.

name#

The name of the algorithm.

Type:

str

aux#

Auxiliary input for the QAOA algorithm.

p#

The number of QAOA steps.

Type:

int

alternating_ansatz#

Whether to use an alternating ansatz.

Type:

bool

parameters#

List of parameters for the algorithm.

Type:

list

mixer_h#

The mixer Hamiltonian.

Type:

SparsePauliOp | None

property setup: dict#
parse_samplingVQEResult(res: SamplingVQEResult, res_path) dict[source]#
run(problem: Problem, backend: IBMBackend, formatter=typing.Callable) Result[source]#

Runs the QAOA algorithm

construct_result(result: dict) Result[source]#
get_bitstring(result) str[source]#
class quantum_launcher.routines.qiskit_routines.algorithms.qiskit_native.FALQON(driver_h=None, delta_t=0, beta_0=0, n=1)[source]#

Bases: QiskitOptimizationAlgorithm

Algorithm class with FALQON.

Parameters:
  • driver_h (Optional[Operator]) – The driver Hamiltonian for the problem.

  • delta_t (float) – The time step for the evolution operators.

  • beta_0 (float) – The initial value of beta.

  • n (int) – The number of iterations to run the algorithm.

  • **alg_kwargs – Additional keyword arguments for the base class.

driver_h#

The driver Hamiltonian for the problem.

Type:

Optional[Operator]

delta_t#

The time step for the evolution operators.

Type:

float

beta_0#

The initial value of beta.

Type:

float

n#

The number of iterations to run the algorithm.

Type:

int

cost_h#

The cost Hamiltonian for the problem.

Type:

Optional[Operator]

n_qubits#

The number of qubits in the problem.

Type:

int

parameters#

The list of algorithm parameters.

Type:

List[str]

property setup: dict#
run(problem: Problem, backend: IBMBackend)[source]#

Runs the FALQON algorithm